Protein dynamics viewed by hydrogen exchange.
نویسندگان
چکیده
To examine the relationship between protein structural dynamics and measurable hydrogen exchange (HX) data, the detailed exchange behavior of most of the backbone amide hydrogens of Staphylococcal nuclease was compared with that of their neighbors, with their structural environment, and with other information. Results show that H-bonded hydrogens are protected from exchange, with HX rate effectively zero, even when they are directly adjacent to solvent. The transition to exchange competence requires a dynamic structural excursion that removes H-bond protection and allows exposure to solvent HX catalyst. The detailed data often make clear the nature of the dynamic excursion required. These range from whole molecule unfolding, through smaller cooperative unfolding reactions of secondary structural elements, and down to local fluctuations that involve as little as a single peptide group or side chain or water molecule. The particular motion that dominates the exchange of any hydrogen is the one that allows the fastest HX rate. The motion and the rate it produces are determined by surrounding structure and not by nearness to solvent or the strength of the protecting H-bond itself or its acceptor type (main chain, side chain, structurally bound water). Many of these motions occur over time scales that are appropriate for biochemical function.
منابع مشابه
Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry.
The rates at which hydrogens located at peptide amide linkages in proteins undergo isotopic exchange when a protein is exposed to D2O depend on whether these amide hydrogens are hydrogen bonded and whether they are accessible to the aqueous solvent. Hence, amide hydrogen exchange rates are a sensitive probe for detecting changes in protein conformation and dynamics. Hydrogen exchange rates in p...
متن کاملDynamics and thermodynamics of hyperthermophilic proteins by hydrogen exchange.
The naturally occurring hydrogen exchange of protein molecules can provide nonperturbing site-resolved measurements of protein stability and flexibility and changes therein. The measurement and understanding of these issues is especially pertinent to studies of thermophilic proteins. This chapter briefly reviews the considerations necessary for measuring hydrogen exchange and translating HX mea...
متن کاملReal-time NMR measurements of protein folding and hydrogen exchange dynamics
Results of recent time-resolved NMR spectroscopy project it as one of the more powerful techniques to unravel the structural and dynamical events accompanying polypeptide folding and protein backbone amide hydrogen exchange. It has been possible to interpret the NMR-derived experimental results in the context of energy landscape model of folding and dynamics. Existing methodologies and availabi...
متن کاملHydrogen exchange studies of protein structure.
Hydrogen exchange techniques, with their residue-level specificity, exquisite sensitivity, and adaptability to many solution conditions, are becoming essential to the study of protein stability, folding and dynamics. Recent studies have elucidated the structures of intermediates formed transiently during protein folding and rare partially folded ensembles present at equilibrium. Analysis of hyd...
متن کاملHydrogen exchange mass spectrometry for the analysis of protein dynamics.
Hydrogen exchange coupled to mass spectrometry (MS) has become a valuable analytical tool for the study of protein dynamics. By combining information about protein dynamics with more classical functional data, a more thorough understanding of protein function can be obtained. In many cases, protein dynamics are directly related to specific protein functions such as conformational changes during...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2012